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ABSTRACT

Large, complex computer simulation models can require

prohibitively costly and time-consuming experimental programs to
study their behavior. Therefore we may want to concentrate the

analysis on the set of "most important" factors (i.e., input

variable3). Factor screening experiments, which attempt to

identify the more important variables, can be extremely useful in

the study of such models. The number of computer runs available

for screening, however, is usually severely limited. In fact,

the number of factors often exceeds the number of available runs.,

In this paper we present a survey of supersaturated designs for

use in factor screening experiments. The designs considered are:

random balance, 'systematic supersaturated, group screening,

modified group screening, T-optimal, R-optimal, and search

designs. We discuss in general terms the basic technique,

advantages, and disadvantages of each procedure surveyed.

1. INTRODUCTION.

Large-scal" :rnuter simulation models, because of their,
size and runnine tPme, can require prohibitively costly and

time-consuming experimental programs to study ttheir behavior.

-Often it is anticipated, however, that only relatively few

factors (i.e., input variables) will have major effects.

Therefore, one may want to conduct an efficient preliminary

experiment to determine the subset of "most important* factors.

Once 'the most important factorshave been identified, subsequent

experimentation can focus on these particular factors, thereby

eliminating experimentation' with relatively unimportant factors

which can needlessly consume resources.

C In some situations, of oourse, prior information concerning
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the experimental factors is available and can be used'to identify

those factors which are most likely to be of importance.

Although the use of prior information can be beneficial to the

screening procers, in this paper we assume that there is no prior

information available. This would not exclude, for example,

situations in which prior information is available on the

importance of some of the factors, and it is desired to examine

the remaining factors in a screening experiment.

The function of a factor screening experiment is to sort the

factors into two groups. One group consists of the important

factors which are judged worthwhile to investigate further, while

the other consists of the remaining factors classified as

unimportant. In general,- in screening experiments we want (a) to

detect as many important factors as possible, (b) to declare

important as few unimportant factors as possible, and (c) to

expend as few computer runs as possible. Since these are

conflicting objectives, one must generally trade off how many

runs a screening method requires against how accurately it

classifies factors.

The screening problem can occur in two general situations.

These are the unsaturated/saturated and the supersaturated

situations. In the unsaturated/saturated situation, onecan

afford to invest more runs than there are factors. In the

supersaturated situation, the number of factors equals or exceeds

the number of' runs available for screening. Although screening

can be done more effectively in the unsaturated/saturated

situation, the supersaturated situation is a common and practical

situation in the analysis of large-scale simulation models.

Here, once again, design economy is the primary consideration.

Supersaturated design procedures are not customarily

discussed in textbooks on experimental design, and there are few
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examples of such experiments in the statistical or simulation

literature. This paper presents a survey of supersaturated

designs for use in factor screening, with application ,to

large-scale simulation models. The designs considered are: (U)

random balance designs, (CA) systematic supersaturated designs,

(iii) group screening designs, (iv) modified groupscreening

designs, (v) T-optimal designs, (Yvi) R-optimal designs, and (vii)

search designs. Our intent is. to provide a broad overview of

supersaturated screening methods and to discuss in general terms

the basic technique, analysis procedures, advantages, and

disadvantages of each mLthod surveyed. .ppropriate referenees

are provided if further information is desired.

2. A SCREENING MODEL

For the purpose of detecting the factors which have major

effects, it generally suffices to assume the first-order model

K
Yi " 0B + E,o ix ij + C i

j=1

where Yi is the value of the response (i.e., output-variable) in

the'ith simulation run, K is the total number of factors, 'each of

which is at, two normalized levels (coded +1), xj is. the level of

the jth factor during the ith simulation run, B0 is a constant

component common .to all observations, j >01) ls the (linear)

effect of the jth factor, and e is a random error component with
2

mean 0 and unknown variance oa

A common interpretation of this model is that it represents

a first-order Taylor series approximation to the true

relationship. between the output Y, and the normalized input

3
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variables xl, x 2 , ... , xK. Moreover, the coefficients 8 1, 82,

*.Of SK can be re'lated to the sensitivity of the output variable

Yj to changes m..de in the input variables, at least in the

vicinity of their nominal values. Ordinarily this model would be
used over a relatively small region of the factor space.

3. SUPERSATURATED SCREENING DESIGNS

Screening designs can be classified as either "fixed" or
"sequential" designs. In a fixed, or nonsequential, design, the
factors are screened based on a given set of observations (i.e.,

computer runs). In a sequential design, results from a
first-stage design are usea to provide information on how to set
up the design used in the next stage, and so on. All of the
designs considered in this paper are fixed, with the exception of
group screening designs which are sequential.

t
3.1 Random Balance Designs

Random balance (RB) designs, introduced by Budne (1959a,

1959b) and Satterthwaite (1959), were discussed at length by
Anscombe (1959) and Youden et al. (1959). See also Dempster
(1960), Mauro and Smith (1984),,and Mauro and Burns (1984).

'In a two-level (+1) RB design, each column of the design
matrix consists of N/2 .- 's and N/2 -1's where N, an even number,

denotes the tctal number of :'uns to be made. The +l's and -l's

in each column are assigned randomly, making all possible

combinations of N/2 +1's and N/2 -l's equally likely, with each
column receiving an independent randomization.

The principal advantage of the RB method is its flexibility.

The number of runs N can be selected independently of the number
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of factors K. No mathematical restriction or relationship,

except that N be an even number, need exist between N and K. A

second advantage is that RB designs are very easy to prepare for

any combination of N and K. This latter advantage can be an

important consideration when K is large.

The major disadvantage of RB designs is that confounding is

random. Anscombe (1959) has written:

The fact that the degree of nonorthogonality or unbalance is
random can be made the basis for an objection to the whole
notion of random balance designs. Such designs may work
well on the average, but should I trust to one on this
occasion?

Indeed, the lack of control over the confounding in RB designs

has been a controversial aspect since such experimentation was

first proposed.

'Another disadvantage of RB designs is that there is no

generally accepted or established method of analysis for these

designs. In fact, the problem of analysis is characteristic of

supersaturated designs with irregular confounding patterns and is

not peculiar to the RB method. The simplest analysis approach is

to consider each factor separately, ignoring'all other factors,

and apply some standard analysis technique such as an F-teat.

More sophisticated analyris methods which can, be used include

variable selection procedures such as least squares stepwise and

stagewise regression (see, for example, Draper and Smith 1981).

The simple least squares estimator of obtained by
C ignoring all other factors is given.by

SU +- j )/2

C where y (') is the average value of'the response over the N/2
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runs at the +1(-1) level of the jth facto,. Let y denote the Nxl

vector (ylY2,...,yN)' of responses and x denote the Nxl vector

(XljX 2 j,...,XNj'. Further, let X=[,l ... ,xK], where 1

designates an Nxl vector of +1's. In an RB design, the matrix X

is, by construction, stochastic (except, of course, for the

initial column of +1's). Assuming that X and the c , are

independent, it is easily shown that conditional on X,

E(8SIX> e +( z 8.x. (1)a ~ ixix)/N

i j

and

V(8NX)= (2)

The conditional mean square error (MSE) of is then

MSE(OJIX) o 2 /N + ( £ xII1j)21N
i#j ii

Unconditionally, it can be' shown that

E( ' (3)

and

tf- .V Bj)= 2/(N_1)' + o2IN (4)

where', = 02'

if. m•J"

As Box (1959) pointed out, equations (1) and (2) refer to

the behavior of the estimates for' repet-itions of a particular RB

design. Equations (3) and 4), on the' other-hand, refer to the
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behavior of the estimates if we average over the random choice of

RB designs. Box noted that although 8 is unconditionally
j

unbiased, the effect of the conditional bias term in (1) isA"

transferred to the unconditional variance of 1i which now

contains terms' from every other factor present. Ccnditionally,

t.herefore, one pays the price of having a biased estimator;

unconditionally, one pays the price of having a potentially

inflated variance. From either point of view, RB sampling would

seem inefficient for detecting all but the very large effects.

In a study of the RB method, Mauro and Burns (1984) derived

formulas for determining (unconditional) power probabilities of

detecting factor effects when separate F-tests are used as the

method of analysis.

Some further results regarding the use of separate F-tests

are that for i~j

coy (gil$) = 8iaj/(N-1)

and corr(ai,) aij/0

The correlation expressed in equation. (5) is a measureof the

confounding, between-8-i- and j. It is interesting to note that an

increase in N doe4 not reduce the confounding- in.an RB design

where simple least squares is used as the estimation method. As

indicated by (5), the confounding 'between $i and ij is primarily

a function of a and the magnitudes of the effects in the model.

It should also be noted that more sophisticated analysis

techniques such as variable selection procedures are not immune

to the adverse effects of the irregular confounding. patterns'

characteristic of supersaturated designs. It is well known that

multicollinearity in the predictor variables can cause serious

computational and statistical difficulties. See, for example,
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Selsley, Kuh, and Welsch (1980) and Silvey (1969). Furthermore,

sequential selection procedures have the added problem that it is

difficult to control the true overall significance level (i.e.,

the probability of declaring important a negligible factor) of

such procedures.

3.2 Systematic Supersaturated Designs

Because of the random eonfounding that occurs in RB designs,

Booth and Cox (1962) introduced balanced (i.e., an equal number

of +11s ana -1's in each design column) two-level designs which

systematically attempt to minimize confounding. Since not all

design columns can be orthogonal when N <, K, Booth and (Cx

constructed designs, which they termed systematic supersaturated
(SS). d-.signs, .hat minimize maxi~jjcija where ci=Xi xj. For two

or more designs with the same minimax value, the preferred SS

design is the one which minimizes' the number of pairs of columns

attaining the minimax value.

The cosine of the angle 6iJo 0<ijj< between any two column

vectors, xi and xj, is defined by

COS ei C4j/(ciiicj) 1'2 c IN.

The vectors x and x. are orthogor'al if cijtO or, in other words,
if the cosine of the angle between them is zero. The absolute

value of the inner product, therefore, is a measure of the

orthogonality of any two design columns. In a certain sense,
then, SS designs are constructed as nearly orthogonal as

possible.

Bcoth and Cox tabulated their SS designs for the following

seven combinations of (NK): (12,16), (12,20), (12,24), (18,24),

(18,30), (18,36), and (24,30). 'As they pointed out, designs for



intermediate values of K can be formed by dropping the final
columns from the next largest SS design. The designs indicated

above were obtained with the aid of an iterative computer search

procedure, since it was impracticable to enumerate all possible
designs and select the best.

The principal advantage of SS designs is that they attempt

to minimize the confounding which inevitably occurs when N < K.

The principal disadvantage is that these designs are not, readily

available for combinations of N and K other than those already

tabulated. Furthermore, the time and expense needed to write and
to run a computer program for the generation of these designs may
be prohibitive, especially if K is large. Also, as in RB

designs, there remains the difficulty that the analysis of SS

designs is complicated by the confounding of factor effects.

A quick comparison of SS with RB designs ean be made based

on, an analysis of the variance of the inner product of two
columns chosen at random from the design. For RB designs, for
example, the variance of xj2j for any i and Jis N2 /(N-1). Booth.

and- Cox made such a comparison for the seven SS designs they
derived and observed that 'SS designs are substantially better

than RB designs when N > K/2. As would be expected, SS designs

lose their advantage when N is small relative to K.

3.3 Grou.p Screening Designs

In a group screening (GS) design we partition the individual
factors into groups of suitable sizes and then test these groups
by considering each as a single 'factor. The level of a
"group-factor" is defined by assigning the same level, either +1

or -1, to each component factor. Because the number of
group-factors is generally much smaller than the original number

of fact rs, we can usually study the group-factors in a standard
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orthogonal design such as a Plackett-Burman (PB) design. PB

designs are two-level (+1) orthogonal designs for studying up to

K=4m-1 factors in N=4m runs. PB designs were tabulated by

Plackett and Burman (1946) for N<100 and are minimal in the

number of runs required to achieve orthogonality. When N is a

power of two, PB designs are the same as resolution III2-p

fractional factorial designs (see Box and Hunter 1961).

The'grouping and testing process can b-' epeated for any

number of stages. In each stage, however, we repartition into

smaller groups only those groups determined to be significant in

the previous stage. Further, we hold at a constant level any

factor not included in a subsequent stage so not to bias any of

the later-stage group-factor estimates. In the final stage of

screening, we test factors individually (i.e., the group size is

unity).

GS designs were introduced initially by Watson (1961), who

considered screening in two stages. The GS method was then

generalized to uore than two stages by both Li (1962) and Patel

(1962). For an excellent overview of GS designs, the reader may

consult Kleijnen (1975).

There are two major advantages to GS designs. The first of

these is-that we can to a certain extent control the confounding

pattern, since factors within a group are completely confounded

and factors in different groups are not confounded.. Secondly,

the grouping process reduces the dimensionality of the model and

enables the use of orthogonal main effect designs,.such as PB

designs, to test the significance of group-factors. Moreover,

such designs can be analyzed by the usual analysis Qf variance

procedures-for factorial experiments.

There are two major disadvantages of the GS method. The

.10



first of these is that the total number of runs required by a G8

procedure is not fixed, since the number of group-factors carried

over from stage to stage (when one progresses beyond the first

stage) is random. Thus, in a GS strategy, one generally does not

know prior to experimentation the exact total number of runs that

will be expended. A second major disadvantage is that the

optimal choice of group sises and significance levels used in tne

various stages of group screenIng requires prior information on

certain properties of the underlying model, such as the

proportion of important effects. The problem of selecting

optimal two-stage group screening designs has been discussed by

Mauro (1984) and Patel and Ottieno (1984).

Another consideration in the use of the GS approach is that

important effects may cancel within a group. As a simple

example, consider two factors which have effects that are

negatives or near negatives of each other. If these two fentors

are the only important factors in a group, their effects will

essentially cancel and their combined effect may be maskec by

experimental error., Cancellation of effects cannot occur, of

course, if factor levels are assigned a priori so that all

effects are in the same direction. See Mauro (1984), Mauro and

Burns (1984), and Mauro and Smith (1982) for a more detailed

analysis of the effects of cancellation on the performance of

two-stage GS designs.

3.4 Modified Group Screening Designs

Because an analyst might be reluctant to use a screening

strategy in which the total number of runs cannot be

predetermined, Mauro and Burns (1984) suggested a modified GS

procedure in two 'stages where the total number of runs can be

fixed prior to experimentation. Consider a two-stage GS strategy

where the analyst decides beforehand not only on the number of

11. ,



group-factors which will be tested in the first stage but also on

the number of group-factors, say m, which will be carried over to

the second stage. After the first-stage experiment, the m

group-factors with the largest estimated effects are determined

and their component factors tested individually in a second-stage

experiment. In this strategy, the number of first- and

second-stage runs are both predetermined.

The advantages of modified GS designs are the same as for

regular GS designs. The same disadvantages also apply except of

course that the total number of runs is fixed in modified GS and

is random in regular GS. An additional disadvantage of modified

GS is that the prespecification of m, the number of group-factors

to be carried over to the second stage, may be inadequate in

order to reasonably insure that all of the apparently significant

groups reach the second stage.

Further research and practical experience on modified GS

designs is needed. However, preliminary indications are thatthe

performance of tnis strategy is comparable to that of regular

two-stage GS if the proportion of important effects is not too

large.

3.5 T-Optimal Designs

In a two-level (+1) design, the inner product between any

two design columns is a measure of their orthogonality.' SS"

designs, which were discussed in Section 3.2, are constructed

with the objective of minimizirig the maximum absolute inner

product between any two distinct design columns. 'One can define

other criteria, however, for measuring the optimality of a

supersaturated design.

We define a design to be T-optimal in a given class of

12
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designs if it minimizes, over all designs in that class, the

trace of (X'X) 2 , where X is as defined previously. Equivalently,

a design is T-optimal if it minimizes the sum of squared inner

products of all pairs of columns in X. Thus, the columns of X

are, in a certain sense, as nearly orthogonal as possible.

The principal disadvantage of supersaturated T-optimal

designs is that rules for thei.r general construction have not

been developed, nor have any such designs been tabulated within

the class of two-level (+1) designs. However, in studies where

the constant term 0 is known or an advance estimate is

available, rules for the construction of supersaturated T-optimal

designs can essentially be found in Morris and Mitchell (1983),

who derived such designs in the process of obtaining their

trace-L optimal designs for detecting two-factor interactions. A

second disadvantage is that, as in RB and SS designs, the

analysis of T-optimal designs is made difficult by the

confounding of factor effects.

3.6 R-Optimal Designs

In matrix terms, the screening model introduced in Section 2

can be expressed as

where y is an Nxl vector of responses, Z=(1,1l,4..,fBK) is a

(K1)xl vector of parameters, c is an Nxl vector of random error
terms with mean 0 and variance a , and X is an.Nx(K+I) matrix of

C coefficients of the parameters 8 O,910",..10V We shall assume

that N < K and that X is of rank N. For'simplicity in the

following discussion, we shall also assume that a 2 =0, so that

13
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Consider, then, the supersaturated system of linear

equations y=X8. Since N < K, this system is underdetermined and

therefore possesses infinitely many solutions. It can be shown,

however, that the solution which has minimum length is given by

S =x (xx , -(6)

Because im'is the minimum length solution, it insures, in some

sense, that factors are treated equally in the estimation

process. For example, if two or more factors are completely

confounded, the effect of each factor will be estimated by the

average of their combined effects.

Substituting y=XB into (6), we obtain, in terms of the true
B_,

=- R__B_

where R = X (XX) X. We observe that R is a (K+I)x(K+I)

symmetric idempotent matrix of rank N and is the projection

matrix operator onto-the space spanned by the rows of X. In

addition, since R is a projection matrix, we note that O<riil,

where rii designates the ith diagonal element of R_. Furthermore,

the sum of all diagonal elements of'R equals N, since the trace

of'R equals its rank.

The notion of R-optimal designs was introduced by Mitchell,

Hunter, and Showers ('1980), who considered a Bayesian .nalysis' of

the supersaturated screening problem. Assuming that a2 =0 and no

constant term 00 is present and making certain prior assumptions

regarding 1,',2,... 8,K. - was obtained as the Bayes estimate of

B. It may be noted that the coefficient matrix X, in this case,

does not include a column of +1's corresponding to the constant

term 80.

14



The variance-covariance matrix of the posterior distribution

of 8, as derived by Mitchell, Hunter, and Showers, was found to

be proportional to the matrix I-R. Consideration of this result

lead to the following design criteria. A design is said to be

R-optimal in a given class of designs if it minimizes, over all

designs in that class, the. maximum diagonal element of R. This

amounts to making the diagonal elements of R, hence also I-R, as

nearly equal as possible (since the tr3ce of R is fixed). Thus,

an R-optimal design would, in some sense, provide equal

information on all the Bi's. It follows that if a design exists

such that all ri are equal, that design is R-optimal.

In a related Bayesian treatment of this problem, Anscombe

(1963) imposed certain restrictions on the coefficient matrix X

in order to expedite calculation of the posterior distribution.

One of these was that the rows of X are orthogonal. It is easy

to show that if X is a row-orthogonal matrix, the diagonal

elements of R * are all equal, and consequently the associated

design is R-optimal. This indicates that, for certain values of

N and K, a supersaturated R-optimal design can be readily

.obtained by transposing a (K+I)xN (N < K) column-orthogonal

matrix (where a row of +1's is reserved as coefficients of the

constant term a

The principal advantage to' R-optimal designs is that, under

certain restrictions, estimation of B is isotropic, i.e., the

posterior variances of the 8i are all equal. The principal

disadvantage of such designs is that their general performance

characteristics in factor screening experiments have not been

fully evaiuated.

15
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3.7 Search Designs

The factor screening problem can also be formilated as a

"search" problem, following Srivastava (1975). Suppose it is

known that at most k of the K factor effects are non-zero and the

remaining (K-k) effects are zero. The goal of the search problem

is to determine the k non-zero effects and estimate them.

Srivastava developed design criteria for obtaining search

designs in the case where no experimental error is present (i.e.,
a2=0). We ean write the coefficient matrix X as X=(I D), where 1

is an Nxl vector of +1's and D is an NxK design matrix. In order

to ensure that the k non-zero effects can be uniquely determined

from the Kl/k!(K-k)! possible subsets, every subset of 2k columns

of D together with the column vector 1 must have a combined rank

of 2k+1. This 'implies, of course, that N > 2k+I..

Smaller sized search designs are possible, however, under

the further restriction that the response vector y does not lie

in the intersection of two competing subspaces.. An equivalent

restriction is that no linear relationships exist among the Is.

In this case, X may be chosen so that no two (k+1)-dimensional

column subspaces are identical, where each subspace includes the

column vector 1. This implies, of course, that N > k+1.

The principal advantage of search designs is that

theoretically the non-negligible effects should be identified'and

estimated with reasonable power, since this is an inherent

condition of the construction of such' designs.,

There-are three major disadvantages of search designs. The

first of these is that construction of two-level (+I) search

designs is extremely difficult, particularly for large-scale

simulation studies. A second disadvantage is that it is assumed

that the maximum number of non-negligible effects, k, is known.

It is unclear, however, what impact misspecification of k wil'l

16
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have on the search procedure. Finally, the analysis of search

designs, which is based on subset regressicns, may require a

prohibitive number of computations even for moderate values of N,

K, and k.

4. SUMMARY DISCUSSION

In this paper we have presented a description and

comparative discussion of eight different types of supersaturated

designs which have been suggested for use in factor screening

experiments, with application to the study of large-scale

computer simulation models. Because of the lack of comparative

performance data, there are currently no definitive guidelines

for the selection and use of supersaturated screening methods.

Nevertheless, of those methods surveyed, the group screening

method has been generally recommended, and we would concur with

this recommendation except when the number of runs relative to

the number of factors is severely limited.. In such a case, Mauro

and Burns (1984) found that the performance of group screening

can be extremely poor, even for detecting the large effects. In

such situations, then, alternative design strategies, such as

systematic supersaturated designs, should be considered. From.a

practical point of view, although the screening plans considered

in this paper are appealing, further theoretical development of

these and other methods is needed, particularly in relation to

the study of computer simulations per se.

17
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